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Abstract  It is well known that during dynamic deformation or in the event when the deformation 
is imparted from outside at a very high rate, the stress experienced by the entire structure is not 
equal at any instance of time.  In other words, stress has to travel through the body at a certain 
velocity usually specific to the body itself.  Like quasi-static situation, stresses can not be 
determined from the sequence of equilibrium states that can be treated by well-known equations of 
mechanics of materials. Therefore, a separate treatment of the subject based on the propagation of 
waves is necessary.  The wave mechanics when coupled with thermodynamic changes occurring in 
the body during high rates of loading, makes the analytical and experimental determination of 
stresses and strain extremely rigorous, and deserves special attention.  Over the years, beginning 
from the early 20th century, researchers have dealt with this issue. Experimental devices were 
introduced and various analytical formulations were established. While it was progressing well 
with metals and alloys, complications arose when attempts were made to apply these formulations 
to composite materials.  This paper takes a systematic look at the various approaches undertaken so 
far and describes state of the art techniques to acquire response of composite materials under high 
strain rate loading. 
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INTRODUCTION 

 
   Composite materials are being widely used as 
structural components in both civil and military 
applications. In many of these applications the load is 
applied dynamically, resulting in the development of 
high rates of strain and stress. The ability to predict 
failure of these structures under dynamic loading is 
becoming increasingly important. 
 
   In dynamic events such as impact phenomena, 
disturbances in the form of stress waves emanate from 
the point of impact and propagate through the structure. 
Propagation of these waves through composites will be 
significantly different from what is usually found with 
homogeneous materials [1]. Because of the complexity 
introduced by the inertia forces, such as, variation of 
properties with the rate of loading, damage initiation 
and growth during the loading process, etc., the 
principles of dynamic elasticity have not been well 
understood. To study the complex phenomena 
associated with the stress waves, a clear distinction must 
be made between material response and structural 
response. On this latter point we note that the response 
of a structure depends on its geometry, the point of 
application of the load, and the way in which the 
material comprising the structure responds. In order to 
find the individual material response, we must separate 

it from the overall response of the structure. 
Experiments must thus be designed or models 
developed which make this separation possible. 
 
   One of the most widely used test methods for 
evaluating high strain rate (HSR) effects in materials is 
the Split Hopkinson Pressure Bar (SHPB) technique. 
Experimental work on the HSR response of composites 
involving the use of the SHPB method has been 
reported in the literature abundantly. Various loading 
configurations have been used, including compression 
[2-4], tension [5-7] and shear [8-9]. Additional 
modifications such as quartz-crystal-embedded 
Hopkinson bar used by Togami et al. [10], which 
measures the large-amplitude pulse to evaluate the 
performance of accelerometers, have extended the 
capabilities of the SHPB. Recently, Mahfuz et al. [11] 
further enhanced its application by using a 
polycarbonate transmitter bar with a steel incident bar to 
extract the HSR response of soft materials like low-
density foam. Although SHPB is a well established and 
widely used technique for determining HSR behavior of 
isotropic materials, care must be taken when it is used to 
characterize the composite materials. 
 
   An extensive research has been conducted on 
Hopkinson bar to verify the validity of basic 
assumptions used in test procedure in order to provide 
higher precision to SHPB experiments. The specimen 
geometry [12-18], dispersion corrections [19-25], radial E-mails:*ememah@tusk.edu, #jeelanis@tusk.edu 
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inertia and frictions [14], validity of testing brittle 
materials [26] and low impedance materials [27-31] 
have been thoroughly investigated. HSR inter laminar 
shear and tensile [32-38] behaviors have also been 
explored using this technique. However, all these 
studies deal with the global response of composites. No 
work has yet been performed to see the individual 
response of constituent materials using any of the HSR 
test methods discussed above. Individual response of the 
constituent material is important for an accurate analysis 
of the failure modes of composites during dynamic 
loading. 
 
   When used for testing fiber-reinforced polymer 
composites, the validity of the SHPB method needs to 
be re-examined carefully because many problems have 
been identified [39] due to service conditions [40-41] or 
due to accidental impact [42-43]. In fact, relationships 
are still undefined between the impact failure strength, 
failure deformation, absorbed fracture energy, failure 
mechanism, and material parameters that are known to 
affect composite behavior [44]. Parameters such as 
deformation speed [45-46], fiber and matrix type, fiber 
volume fraction, fiber orientation [47], curing 
conditions [48] and interfacial bonding [49] influence 
the composite strength and it is rather difficult to predict 
the impact strength of composites at HSR loading 
simply by using the traditional SHPB method. The 
regular SHPB equations do not consider these 
parameters or the individual material responses to 
explain the high strain rate nature of composites. Global 
deformation of the composite specimen is only 
considered regardless of the constituent material’s 
behavior at HSR loading. 
 
   On the other hand, an impressive number of theories 
[50-71] have been proposed to explain the elasto-
dynamics of composite materials. But all these models 
and theories predict the overall response of composites 
during dynamic loading and failures in fibers and matrix 
are coupled by a single composite failure criterion. 
These models and theories, although capable of 
producing important information, are not suitable for the 
study of complex failure phenomena caused by stress 
waves inside the composite structures. Recently, novel 
approaches including new set of mathematical 
formulations have been developed [72] to extract the 
individual response of fiber and matrix in a cylindrical 
composite specimen at HSR loading.  
 
   As stated earlier, following the original introduction 
by Hopkinson [73] and an extensive critical study by 
Davies [74], Kolsky [1] developed the present form of 
the SHPB. In the analysis of SHPB measurements, the 
time duration for direct interpretation of incident, 
reflected and transmitted pulse from strain gage 
readings is usually possible for only up to the time of 
one round-trip wave reflection in the bars [75].  The 
lengths of the bars and the positions of strain gages are 
designed such that the incident pulse and the first 

reflected pulse in each bar can be recorded separately 
during this period.  Duration of these waves also 
becomes critical in determining the attainment of 
equilibrium in the specimen.  If the superposition of 
stress pulses travelling in opposite direction takes place, 
complications arise in strain measurements and make 
the direct inference of individual pulse difficult.  As a 
result, measurements outside this time window are 
usually discarded, and the corresponding portion of 
materials response remains unanalyzed.  However, there 
are cases in which the extended time history of 
mechanical properties is needed.  For instance, when 
testing low-impedance materials, such as polymeric 
foams, the desired maximum strain is usually large [76].  
Therefore, longer test duration, longer measurements 
are needed.  
 
   It is apparent from the above discussion that the SHPB 
experiments has been modified substantially over the 
years with the type of materials to be tested and with the 
type of response to be acquired from the tests.  The 
following will be an overview of the SHPB experiments 
and formulations as they have been developed and used 
to analyze the HSR response of composite materials. 
 

TECHNIQUES FOR MEASURING HSR 
RESPONSE OF SOFT MATERIALS 

 
   Typically, a Split Hopkinson Pressure Bar (SHPB) is 
used to acquire the response of materials under high 
strain rate loading.  The technique has been extended to 
composite materials without much of a change except 
that one has to be careful with the impedance match 
between the bars and the specimen-material [77-79].  
While there are issues still to be resolved, as to how the 
constituent matrix and fiber will affect the overall 
composite response, SHPB is a popular technique to 
characterize composite specimens.  In case of soft 
materials or foam-core sandwich composites, the 
scenario is however, quite different.   Due to the 
presence of the core material which is usually soft, the 
magnitude of strain transmitted to the transmission bar 
will be significantly small.  In a regular SHPB set up 
with steel or aluminum bars, one cannot obtain accurate 
strain or stress response with such insignificant signal.  
Some modification of SHPB system to acquire the 
response of sandwich specimens is therefore, in order. 
 
   One idea is to use low impedance material for both 
incidence and transmission bars so that one can obtain a 
measurable pulse at the transmission end.  A case in 
point is the use of viscoelastic bars, which has been 
tried by many researchers [80-84].  Disadvantage with 
viscoelastic bars is that because of the wave attenuation 
and dispersion it requires idealized assumptions, which 
are not necessarily true [85].  Furthermore, the dynamic 
mechanical properties are also susceptible to 
environmental effects such as temperature, moisture 
level and aging factor [85,86].  Due to these limitations, 
use of viscoelastic bars has not been pursued 
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extensively.   Alternately, attempts have been made to 
use aluminum alloy bars with smaller and hollow cross-
sectional area transmitter bar [85].  The goal was to 
reduce the ratio of the cross-sectional areas between the 
bar and the specimen such that the transmitted strain can 
be increased.  The concept is good from a theoretical 
standpoint, but in practice the hollow transmitter bar 
requires a fitted aluminum cap at its end to hold the 
specimen.  This introduces impedance mismatch and 
disturbs the stress wave propagation.  Although a pulse-
shaper is used to filter out the end-cap influence, the 
question of impedance mismatch still remains. 
 
   A novel approach has been developed recently to test 
sandwich composites using a SHPB.  Since only the 
transmitter signal is weak, a polycarbonate bar is used to 
replace the transmitter bar as shown in Fig. 1.  Because 
of its low impedance, the polycarbonate bar boosts the 
transmitted signal to an extent that the regular SHPB 
data acquisition system can capture the transmitted 
pulse even for a very soft material. The low impedance 
of polycarbonate is due to its low modulus and density. 
Use of polycarbonate bar introduces a different set of 
problems since now the two bar materials are different.   
A substantial modification of the SHPB equations is 
therefore, necessary to utilize this system for strain 
measurements. Detailed description of the mathematical 
modifications is presented below. 
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incidence and transmitter bar are made of the same 
material, and are of same cross-sectional area. 
 
   If now a polycarbonate bar replaces the transmitter bar 
of maraging steel, equation (1) and (2) will no longer be 
applicable.  Materials of the incidence and transmission 
bars are now different.  This difference in materials can 
be accounted for in the following way. 
 
   Let 1u  and 2u , be the specimen-bar interface 
velocities at the incidence and transmission faces 
respectively.  Now if we assume that the particle 
velocity is equal to the interface velocity, and that a 
portion of the incoming strain is reflected at the 
incidence end, then it can be easily shown that these 
time-resolved displacements are [72]: 
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where )(tiε  is the incident strain pulse measured by a 
strain gauge mounted axially on the incident bar 
surface, iC  and tC  are the incident bar and 
transmission bar wave velocities respectively. The axial 
engineering strain of the specimen is therefore, Sandwich Specimen
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      Fig 1. Modified Hopkinson Bar Set Up 

MATHEMATICAL MODIFICATIONS 
 

In a regular Split Hopkinson Pressure Bar the nominal 
rain ε (t) in the specimen is calculated as [1]: 
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here L is the original length of the specimen, rε (t) is 
e time-resolved strain of the reflected pulse in the 
cident bar, and 0C is the wave velocity through the 
r material. Integration of eqn. (1) with respect to time 
ves the time-resolved axial strain of the specimen. The 
minal axial stress, σ , in the specimen is determined 
:                                                  
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here sA is the cross-sectional area of the specimen, 

t is the time-resolved axial strain in the transmission 

r of cross-sectional area 0A , and E0 is the Young’s 
odulus of the bar material. The foregoing calculations 
e based on the assumptions that the specimen 
dergoes homogeneous deformation and that both the 
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   When the specimen is in stress equilibrium, the axial 
forces acting at the two interfaces are equal, and hence,                     
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where iE  and tE  are the Young's modulus of the 
materials of the incident and transmission bars 
respectively. Substitution of eqn (6) into eqn (5) gives 

Incidence bar (Steel) Transmitter bar (Polycarbonate)

Strain gage Strain gage

Striker Bar

u1 u2

( )[ ] ( ){ }dttCttC
L

t

L
tutu

t

ttrii∫ −−=∴

−
=

•

•

εεεε

ε

)(1)(

)()(
)( 21

( )[ ] ( ) dt
E
E

CttC
L

t
t

ri
t

i
trii∫









+−−=
0

)(1)( εεεεε

 or,     

( ) ( ) 













+−





−= ∫ ∫

t t

r
t

i

i

t
i

t

i

i

ti dtt
E
E

C
C

dtt
E
E

C
C

L
C

t
0 0

11)( εεε  

( ) 







+−−=∴ ∫ ∫

t t

ri
i dttKdttK

L
C

t
0 0

)()1()()1( εεε   (7) 

Where, 
t

i

i

t

E
E

C
C

K =  



ICME 2001, Dhaka,December 26-28 

Keynote Paper  60 

Eqn (7) can now be used to calculate nominal axial 
strain of the specimen from the measured incident and 
reflected strain pulses using the modified SHPB setup. 
The average stress in the specimen after the equilibrium 
is reached, can be found as [72]:        

                         
( )

0

21

2
)(

A
tPtP +

=σ              (8)   

Where ( )tP1  and ( )tP2  are the forces acting at 
interfaces 1 and 2 as defined previously.   
 
Since, ( )riiEAtP εε += 01 )(  

 and    ( ) ( )tEAtP ttε02 =                            (9)                    
 
Substituting eqns (9) and (6) into (8), one can show that 
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If now the strain pulses, namely, )(tiε , rε (t), and 

tε (t) are measurable, strain and stress on the sample 
can be determined from equations (7) and (10) 
respectively. 
 
Constituent Material's Response 

The traditional way to obtain the strain rate, 
•
ε  for 

composite specimens, is from the measured values of 
the strain pulses. 
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Where, C0 is the longitudinal bar wave velocity, L is the 
specimen length and εi, εr, εt are the incident, reflected 
and transmitted strain signals. By integrating equation 
(11) and assuming the equilibrium state in the specimen, 
strain of the sample can be calculated using the 
following equation. 
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On the other hand, from the equilibrium forces at the 
two interfaces of the specimens, one can calculate the 
average stress on the sample as: 
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Where, A0 and As are the bar and sample cross-sectional 
areas respectively, and E0 is the bar modulus. Stress vs. 
strain of the sample at the high strain rate loading can 
therefore be plotted by using the equation (12) and (13). 
 
   The regular Hopkinson bar equations give the global 
response, namely σ(t) and ε (t) of the composite 
specimen once the equilibrium is reached. Any 
difference between the responses of matrix and fiber can 
not be extracted from the regular SHPB equations. In 
this investigation [72] cylindrical specimen has been 

designed so that the individual response can be 
extracted from the regular incidence and transmitted 
pulse obtained in a SHPB test. The mathematical 
derivations are as follows: 

 
   From the conservation of momentum as applied to the 
composite specimen sandwiched between the incidence 
and transmission bars, 

                ( ) FmU
dt
d

p =  

Where, F = total force on the specimen, m = mass of the 
specimen and pU = particle velocity. If mF And 

fF are the loads carried by the matrix and fiber 
respectively, then 
                          fm FFF +=  
   It is assumed that both matrix and fiber will move 
simultaneously so that they will have the same particle 
velocity, Up. Since mF is the load carried by the matrix, 
a separate momentum equation can be written for the 
matrix, i.e., 
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matrix, mE and mρ are the modulus and density of the 

matrix material and mA is the cross-sectional area of the 
matrix in the cylindrical composite specimen. Using the 
similar approach for the fibers, 
 

pfff UCρσ =                                                   (15)                               

where, 
f

f
f

E
C

ρ
= .  It is to be noted here that the 

modulus, E and density, ρ  of both fiber and matrix 
will be considered constant throughout the loading 
range.  In other words, it is assumed that elastic 
modulus and the density will remain unchanged with 
respect to strain rate.  From equations (14) and (15) it is 
established that for a general case,   

pCUρσ =  
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       i.e.  pACUFA ρσ ==  
Since fff AF σ= and mmm AF σ= ,  

ffmmfm AAFFF σσ +=+=  
                                            
i.e. ( )mmmfffp ACACUF ρρ +=                   (16)                   
                                        
The force, F can now be determined from the strains 
measured in the incidence bar: 

( )RIAEF εε += 00               (17)                                                                        
where 0E , 0A  are the modulus and cross-sectional area 

of the incidence bar,  and RI εε & are the incidence and 
reflected strains respectively measured in the SHPB test.    
Combining equations (16) and (17), 
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 To extract the fiber and matrix strains, equation (15) is 
used and combined with eqn (18):  
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   and similarly for matrix, 
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Once the equilibrium is reached it can be shown that  

TRI εεε =+  and in that case,  
the individual responses are as follows: 

the fiber strain is: ( ) ( )t
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and the matrix strain is: ( ) ( )t
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m
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Similarly the stress components are: 
( ) ( )tRCt Tfff ερσ =                                                                     

  and ( ) ( )tRCt Tmmm ερσ =                    (22)                
 

The set of equations in (21) and (22) can now be used to 
extract the individual responses of the fiber and matrix 
from a regular SHPB test. 
 

SEPARATION OF ELASTIC WAVES IN THE 
SHPB 

 
   As stated earlier a method for the analysis of elastic 
waves in SHPB for unlimited time duration is required 
to capture the response for a considerable period of 
time.  A method has been developed [75] which allows 
the separation of component waves traveling in opposite 
directions in each bar using the strain history measured 
at one point on the bar and a known end condition for it.   
 
   Wave motion in slender cylindrical bar be described 
by the one-dimensional wave equation      
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   The general solution to (23) consists of two arbitrary 
functions that represent the wave forms traveling in the 
positive and negative x-directions, i.e.,  
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   The longitudinal strain may be expressed in a similar 
form 
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   The particle velocity can be written in terms of ε1 and 
ε2 as  

      v (x,t) = c[-ε 1(t- c
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where v(x, t) =  
t
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∂

∂ ),(
  

 
   In a regular SHPB test, ε1  and ε2  are determined 
through direct measurement of strain histories at two 
different locations on each of the bars.  This approach 
requires an additional gage to be mounted on each of the 
bars.  In a typical situation of the SHPB test, the left end 
of the incidence bar is free of traction at all times except 
for the duration when it is in contact with the striker bar. 
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For the transmitter bar, the right end of the bar is free of 
traction at all times until it is arrested by a stopper long 
after the experiment.  This known condition can be used 
to replace one of the measurements needed in the 
regular method.  
           
   From a Lagrangian diagram as shown in Fig. 2, and 
utilizing eqn. (25) one can write, 
εA(t) = ε 1(t - ta) + ε 2(t  + ta)            (27) 
 
where  εA (t) = ε (a, t)  and ta  =  a/c .    The incidence 
and transmitter bars can now be considered separately 
because of the differences in their end conditions. 
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INCIDENCE BAR 

 
   The duration of impact between the striker bar and the 
incidence bar is 2Lo /c, where Lo is the length of the 
striker bar.  It is assumed here that the striker bar and 
the incidence bar have the same impedance.  For the 
incidence pulse and the first reflected pulse from the 
interface-1 to be recorded separately without 
superposition at the strain gage at x = a, it is required 
that Lo < (L - a), where L  is the length of the incidence 
bar.  Now considering three time intervals, t < T - ta,  T 
- ta  < t < T + ta ,  and  t > T + ta , and invoking the 
traction free boundary conditions at x = 0, and utilizing 
eqns. (25) and (27) it can be shown that [75] 
 
  

εA(t)=ε 1(t-ta)  for   t<T-ta                       (28)                 (28) 
 
 

εA(t)=ε 2(t+ta) for T-ta< t <T+ta              (29)                 (29) 
 

εA(t)= -ε 1(t-ta)+ε 2(t + ta)  for t > T+ ta    (30)    
 
These three eqns. can now be combined to yield 
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and 
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Where the change in variables are;( t - ta) ξ→  and  
(t + ta) η→  
 
   In a similar fashion, for the transmitter bar with the 
traction free boundary conditions at x = L, it can be 
shown that [75] 
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Wave functions can now be determined using eqns. (31) 
- (32), and (33) - (34). 
 
 

SUMMARY 
 
   A brief overview of the Hopkinson Bar technique in 
determining the strain and stress pulses is presented.  
New sets of mathematical formulations have been 
presented, which with the help of SHPB technique can 
extract the constituent material's response.  It has been 
observed that the individual responses of matrix and the 
fibers are significantly different from the global 
response of the composite even in quasi-static loading 
conditions.  This difference is more pronounced at 
HSRs.  Interfacial failure has also been observed to be 
directly dependent on the strain rate. 
 
   A novel steel-polycarbonate system has been 
described to test soft materials including sandwich 
composites at HSR.  Related mathematical 
modifications to regular SHPB equations are also 
presented.  Viscoelastic nature of the polycarbonate bar 

Strain Gage 

Fig. 2  Lagrangian diagram for longitudinal waves 
in a cylindrical bar 
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has been investigated, and its effect is seen to be 
minimal.   
 
   A simple and efficient method for separating 
component waves travelling in opposite directions in 
cylindrical elastic bars is presented.  The method is 
based on the one-dimensional wave propagation theory 
and requires the use of measured strain history at only 
one location on a bar.  The application of this method 
also requires that the striker bar be shorter than the 
incidence bar less the distance between the strain gage 
station and the striker-incidence bar interface.  The new 
method effectively eliminates the limit on the time 
window for valid data interpretation in the conventional 
SHPB technique. 
 

ACKNOWLEDGEMENTS 
 
   The authors acknowledge with appreciation the 
support for this research from the Office of Naval 
Research (ONR), Army Research Office (ARO) and the 
National Science Foundation through grant No. 
N00014-90-J-11995/P00011, DAAH04-95-1-0369 and 
HRD-9706871 respectively. 
 
 

REFERENCES 
 
1 .H. Kolsky, “ Stress Waves in Solids’” Dover    
Publications, Inc., 0-486-61098-5, New York, NY 
10014, 1963 
2. C. A. Ross and R. L. Sierakowsky, “ Dynamic 
Compressive Properties of a Metal-Matrix Composite 
Material,” Proceedings 16th SAMPE National 
Symposium, Anaheim, California, 1971, p. 109-121 
3.  L. J. Griffiths and D. J. Martin, “ A Study of the 
Dynamic Behavior of a Carbon-Fiber Composite using 
the Split Hopkinson Pressure Bar,” J. Phys. D: Appl. 
Phys., Vol. 7, 1974, p. 2329-2341  
4. Y. L. Bai and J. Harding, “ Fracture Initiation in     
Glass-Reinforced Plastics under Impact Loading, 
Mechanical Properties at High Rates of Strain,” Institute 
of Physics Conference, Oxford, 1984, p. 339-350 
5 .J. Harding and L. M. Welsh, “ A Tensile Testing 
Technique for Fiber Reinforced Composites at Impact 
Rates of Strain,” J. Mater. Sci., Vol. 18, 1983, p. 1810-
1826.  
6. C. A. Ross, W. H. Cook and L. L. Wilson, “ Dynamic 
Tensile Tests of Composite Materials using a Split 
Hopkinson Pressure Bar,” Experimental Techniques, 
Vol. 8, 1984, p. 30-33  
7 .Z. G. Liu and C. Y. Chiem, “ A New Technique for 
Tensile Testing of Composite Materials at High Strain 
Rates,” Experimental Techniques, Vol. 12, 1988, p. 20-
21. 
8. J. D. Campbell, J. L. Lewis, “ The Development and 
Use of a Torsional Split Hopkinson Bar for Testing 
Materials at Shear Strain Rates up to 1500 s-1. Report 
No. 1080, 69,Department of Engineering Science, 
University of Oxford, 1969.  

9.   K. A. Hartley, J. Duffy and R. H. Hawley, “ The 
Torsional Kolsky (split Hopkinson) bar,” Metals 
Handbook, 9th edn., A. Soc. Metals, Vol. 8, 1985, p. 218 
10. T. C. Togami, W. E. Baker and M. J. Forrestal, “ A 
Split Hopkinson Bar Technique to Evaluate the 
Performance of Accelerometers,” Journal of Applied 
Mechanics, Vol. 63, 1996, p. 353-356 
11. Mahfuz, H., Mamun, W., Haque, A., Vaidya, U. and 
Jeelani, S., "An Innovative Technique for Measuring the 
High Strain Rate Response of Sandwich Composites," 
Journal of Composite Structures, in press. 
12.  E. D. H. Davies and S. C. Hunter, “ The Dynamic 
Compression Testing of Solids by the Method of Split 
Hopkinson Pressure Bar,” J. Mech. Phys. Solids, Vol. 
11, 1963, p. 155-179. 
13.  J. Z. Malinowski and J. R. Klepaczko, “ A Unified 
numerical and Analytical approach to Specimen 
Behavior in the split Hopkinson Pressure Bar,” Int. J. 
Mech. Phys. Solids, Vol. 28(6), 1986, p. 381-391.  
14.  L. D. Bertholf and C. H. Karnes, “ Two 
Dimensional Analysis of Split Hopkinson Pressure 
Bar,” J. Mech. Phys. Solids,” Vol. 23, 1975, p. 1-19. 
15. W. Chen, G. Subhash and G. Ravichandran, “ 
Evaluation of Ceramic Specimen Geometries used in 
Split Hopkinson Pressurer Bar,” DYMAT Journal, 
1994, 1(3), 193-210 
16. T. Parry and J. Harding, “ The Failure of Glass-
Reinforced Composites under Dynamic Torsional 
Loading,” Plastic Behavior of anisotropic Solids, ed. J. 
P. Boehler. Colloque Int. du CNRS No 319, Paris, 1988, 
p. 271-288 
17.  H. Leber and J. M. Lifshitz, “ Interlaminar Shear 
Behavior of Plain Weave GFRP at Static and High rates 
of Strain,” Composite Sci. Tech., Vol. 56, 1996 p. 391-
405 
18.  G. Ravichandran, G. Subhash, “ Critical Apprisal of 
Limiting Strain Rates for Compression testing ceramics 
in a Split Hopkinson Pressure Bar,” J. Am. Ceram. Soc., 
1994; 77: 263-267  
19.  DY Hsieh, H. Kolsky, “ An Experimental Study of 
Pulse Propagation in Elastic Cylinders,” Proc. Phys. 
Soc. London, 1958; 71: 608-612 
20.  DA Gorham, “ A numerical Method for the 
Correction of Dispersion in Pressure bar Signals. J Phys 
E Sci Instr 1983; 16: 477-479 
21. PS Follansbee, C. Frantz, “ Wave Propagation in the 
Split Hopkinson Pressure Bar,” J Engrg Mat Tech 1983: 
105: 61-66 
22.  JC Gong, LE Malvern, DA Jenkins, “ Dispersion 
Investigation in the Split Hopkinson Pressure Bar,” J 
Engrg Mat Tech 1990; 112: 309-314  
23.  CKB Lee, RC Crawford, “ A New method for 
Analysis Dispersed Bar Gauge Data,” Mater Sci Tech 
19933; 4:931-937 
24.  JM Lifshitz, H Leber, “ Data Processing in the Split 
Hopkinson Pressure Bar Tests,” Int J Impact Engrg 
1994; 15: 723-733 
25.  H. zhao, G. Gary, “ On the Use of SHPB 
Techniques to Determinethe Dynamic Behavior of 



ICME 2001, Dhaka,December 26-28 

Keynote Paper  64 

Materials in the Range of Small Strains,” Int J Solids 
Structures 1996;33: 3363-3375  
26. Li Zhouhua, J. Lambros, “ Determination of the 
Dynamic Response of Brittle Composites by the Split 
Hopkinson Pressure Bar,” Composite Sci Tech, Vol. 59, 
1999 p. 1097-1107 
27. Wang, L., Labibes, K., Azari, Z., and Pluvinage, G., 
"Generalization of Split Hopkinson Bar Technique to 
use Viscoelastic Bars," International Journal of Impact 
Engineering, Vol. 15, n 5, 1994, pp. 669-686. 
28. Bragov, A.M. and Lomunov, AK, "Methodological 
Aspects of Studying Dynamic Material Properties Using 
the Klosky Method," International Journal of Impact 
Engineering, Vol. 16, n 2, 1995, pp. 321-330. 
29.   Zhao, H., Gary G. and Klepaczko, JR, "On the Use 
of a Viscoelastic Split Hopkinson Pressure Bar, 
International Journal of Impact Engineering, Vol. 19, n 
4, 1997, pp. 319-330. 
30.  Chen, W., Zhang, B. and Forrestal, M.J., "A Split 
Hopkinson Bar Technique for Low-Impedance 
Materials," Experimental Mechanics, June 1999, Vol. 
39, n 2, pp. 81-85. 
31. Mahfuz, H., Mamun, W., Haque, A., Vaidya, U. and 
Jeelani, S., " High Strain Rate Response of Resin 
Infusion Molded Sandwich Composites," ASME Winter 
Annual Meeting, Nashville, November 14-19, 1999, 
AMD-Vol. 235. p. 105-112 
32.  J. Harding, and Y. I. Li, “ Determination of 
Interlaminar Shear Strength for Glass/Epoxy and 
Carbon Epoxy Laminates at impact rates of Strain,” 
Composite Sci Tech, 1992, 45(4), 161-171 
33.  L. Dong, J. Harding, “ A Single Lap Shear 
Specimen for determining the Effect of Strain Rate on 
the Interlaminar Shear Strength of carbon fiber 
Reinforced Laminates,” Composites, 1994, 25(2), 129-
138 
34.  J. Harding and L. Dong, “ Effect of Strain rate on 
the Interlaminar Shear Strength of Carbon Fiber 
Reinforced Laminates,” Compos. Sci Tech., 1994, Vol. 
51 p. 347-358  
35.  C. Y. Chiem and Z. G. Liu, “ High Strain Rate 
Behavior of Carbon Fiber Composites,” Mechanical 
Behavior of Composites and Laminates, proc. of the 
European Mechanics Colloquium 214, ed. W. A. Green 
and M. Micunovic. Kupari, Yugoslavia, 1986, p. 45-53 
36.  B. Bouette, C. Cazeneuve and C. Oytana, “ Shear in 
Carbon/epoxy Laminates at various Strain Rates,” Proc. 
ECCM-4, Stuttgart, FRG, 1990, p. 937-942 
37.  B. Bouette, C. Cazeneuve and C. Oytana, “ Effect 
of Strain rate on interlaminar Shear Properties of 
carbon/epoxy composites,” Compos. Sci. Tech., 1992, 
45, 313-321 
38. J.M. Lifshitz and H. Leber, “ Response 
of Fiber Reinforced Polymers to High Strain Rate 
Loading in Interlaminar Tension and Combined 
Tension/Shear,” Compos. Sci. Tech., Vol. 58, 1998, p. 
987-996 
39. G. Lubin, “ Handbook of Composites”, Nostrand 
Reinhold Company, New York, 1982 

40. B. D. Agarwal and L. Broutman, “ Analysis and 
Performance of Fiber Composites,” A Wiley 
International Publications, 1980. 
41. J. C. Halpin, “ The Role of Matrix in Fibrous 
Composite Structures,” Proceedings of a joint US-Italy 
Symposium on Composite Materials, Capri, Italy, 1981 
42. G. Dorey, “ Fracture Behavior and Residual 
Strength of Carbon Fiber Composites Subjected to 
Impact Loading,” 163, AGARD-CP-163, 1974. 
43. N. L. Hancox, “ The Compression Strength of 
Unidirectional Carbon Fiber Reinforced Plastics,” 
Journal of Material Science, Vol. 10, 1975, p. 234. 
44. A. M. A. El Habak, “ Compressive Resistance of 
Unidirectional GFRP Under High Strain Rate Loading,” 
Journal of Composite Technology and Reasearch, Vol. 
15, No. 4, 1993, p. 311 
45. J. Harding, “ The High Speed Punch of Woven 
Roving Glass Reinforced Composites,” Proc. of the 
Conf. on Mechanical Properties at High Strain Rates of 
Strain, No. 47, 1979, p. 318. 
46. E. D. H. Dvie and S. C. Hunter, “ The Dynamic 
Compression Testing of Solids by the Method of Split 
Hopkinson Pressure Bar,” J. of Mechasnical Physics 
and Solids, Vol. 11, 1963, p. 155. 
47. P. Kumar, A. Garge and B. D. Agarwal, “ Dynamic 
Compression Behavior of Unidirectional GFRP for 
Various Fiber Orientation,” Material Letters, Vol. 4, 
1986, p. 111 
48.  M. R. Piggot and S. Harris, “ Compression Strength 
of Carbon, Glass and Kevlar-49 Fiber Reinforced 
Polyester Resins,” Journal of Material Science, Vol. 15, 
1980, p. 2523. 
49. H. A. Perry, “ Adhesive Bonding of Reinforced 
Plastics,” McGraw Hill Book Company, Inc., New 
York, 1959. 
50. G. W. Postma, “Wave Propagation in Stratified 
Medium.” Geophysics 20, 780 (1965). 
51. B. Lempriere, “ On the Practicability of Analyzing 
Waves in Composites by the Theory of Mixtures,” 
Lockheed Palo Alto Research Laboratory, Report No. 
LMSC-6-78-69-21 (1969). 
52. C. T. Sun, J. D. Achenbach and G. Herrman, “ 
Continuum Theory for a laminated medium,” J. Appl. 
Mech. 35, 467 (1968). 
53. J. E. White and F. A. Angona, “ Elastic Wave 
Velocities in Laminated Media,” J. Acoust. Soc. Am. 27 
311 (1955) 
54. J. D. Achenbach, C. T. Sun and G. Herrman, “ On 
the vibrations of Laminated Body,” J. Appl. Mech. 35, 
689 (1968). 
55. G. A. Hegemier, “ On a Theory of Interacting 
Continua for Wave propagation in Composites,” Proc. 
Symp. Dynam. Comp. Mat. La Jolla, California (1972). 
56. G. A. Hegemier, Gurtman & Adnan H. Nayfeh “ A 
Continuum Mixture Theory of Wave Propagation in 
Laminated and Fiber Reinforced Composites,”  Int. J. 
Solids Structures, Vol. 9, 1973, p. 395-414 
57. D. E. Munson and K.W. Schuler, “ Steady Wave 
Analysis of Wave Propagation in Laminates and 



ICME 2001, Dhaka,December 26-28 

Keynote Paper  65 

Mechanical Mixtures,” J. of Composite Materials, Vol. 
5, 1971, p. 286. 
58. J. C. Peck and G. A. Gurtman, “Dispersive pulse 
Propagation Parallel to the Interfaces of Laminated 
composite,” J. Appl. Mech. Vol. 36, 1969, p.479 
59. Chi-Hung Mok, “ Effective Dynamic Properties of a 
Fiber-Reinforced Material and the Propagation of 
Sinusoidal Waves,” J. AC. Soc. Am., Vol. 46, 1969, 
p.631 
60. D. Achenbach and G. Herrmann, “ Dispersion of 
free harmonic Waves in Fiber Reinforced Composites,” 
AIAA Jour., Vol. 6, 1968, p. 1832. 
61.  P. C. Chou and A. S. D. Wang, “ Control Volume 
Analysis of Elastic Wave Front in Composite 
Materials,” J. of Composite Materials, Vol. 4, 1970, p. 
444. 
62.  L. M. Barkar, “ A Model of Stress Wave 
Propagation in Composite Materials,” J. of Composite 
Materials, Vol. 5, 1971, p. 140. 
63.  R. Hills, “ Elastic Properties of Reinforced Solids: 
Some Theoretical Principles,” Journal of Mechanics and 
Physics of Solids, Vol. 2, 1963, p. 357 
64.  Z. Hashin, S. Shtrikman, “ A Variational Approach 
to the theory of the Elastic Behavior of Multiphase 
Materials.” Journal of Mechanics and Physics of Solids, 
Vol. 2, 1963, p. 127 
65. E. Behrens, “ Elastic Constants of Elementary 
Composites With Rectangular Symmetry,” Journal of 
the Acoustical Society of America, Vol. 42, 1967, p. 
367  
66. R. R. Nachlinger and H. H. Calvit, “ A Constitutive 
Theory for Fiber-Reinforced Viscoelastic Materials, 
Acta Mechanica, 1971 
67. A. Bedford and M. Stern, “ Toward a diffusing 
Continuum Theory of Composite Materials. J. Appl. 
Mech. 38, 8 (1971) 
68.  Y. L. Li, C. Ruiz and J. Harding, “ Stress Wave 
Propagation in Hybrid Composite Materials,” Journal of 
Reinforced Plastics and Composites, Vol. 10, July, 
1991, p. 400 
69.  B. Chen and T. W. Chou, “ Theoretical Analysis of 
Wave Propagation in Woven Fabric Composites,” J. 
Composite Materials, Vol. 33, 1999, p. 1119-1140 
70. Ch. E. Anderson, Jr., P. A. Cox, G. R. Johnson and 
P. J. Maudlin, “ A Constitutive formulation for 
Anisotropic Materials Suitable for Wave Propagation 
Computer Programs –II.” Computational Mechanics, 
Vol. 15, 1994, p. 201-223 
71. E. Padraic, O’Donoghue, E. Charles, Anderson, Jr., 
Gerald J., Friesenhahn and Charles H. Parr, “ A 
Constitutive Formulation for Anisotropic Materials 
Suitable for Wave Propagation Computer Programs,” j. 
Composite Materials, Vol. 26, 1991, p. 1860-1884. 
72. H. Mahfuz, Mamun, W., Austin, L. and Jeelani, S., " 
New Formulations for the Hopkinson bar technique to 
extract a response of the constituent material in 
composite specimens," Proc. Instn Mech Engrs, Vol 
215, 15-27 (2001). 
73. B. Hopkinson, "A Method of Measuring the 
pressure in the Deformation of High Explosives or by 

the Impact of Bullets," Phil. Trans. Royal Soc., A213, 
437-452 (1914). 
74. R. M. Davies, "A critical study of the Hopkinson 
Pressure Bar," Phil. Trans. Royal Soc. London, A240, 
375-457 (1948). 
75. S. W. Park and M. Zhou, "Separation of Elastic 
Waves in Split Hopkinson Bars using One-Point Strain 
Measurements," Experimental Mechanics, Vol 39, No. 
4, 1999, pp. 287-294. 
76. H. Zhao and G. Gary, "A New Method for the 
Separation of Waves: Application to the SHPB 
Technique for an Unlimited Duration of Measurement," 
J. Mech. Phys. Solids, 45, 1185-1202 (1997). 
77. Harding, J., "Effect of Strain Rate and Specimen 
Geometry on the Compressive Strength of Woven 
Glass-Reinforced Epoxy Laminates," Composites, Vol. 
24, N 4, 1993, pp. 323-332. 
78. Groves, S., Roberto, S., Lyon, R. and Brown, A., 
"High Strain rate Effects for Composite Materials," 
Composite Materials Testing and design (11th Volume), 
ASTM STP 1206, E. T., Camponeschi, Jr. Ed., 
American Society for Testing and Materials, 
Philadelphia, 1993, pp. 162-176. 
79.  Montiel, D. and Williams, C., "A Method for 
evaluating the High Strain Rate Compressive properties 
of Composite Materials," Composite Materials: Testing 
and design (10th volume), ASTM STP 1120, Glenn C. 
Grimes, Ed., American Society for Testing and 
Materials, Philadelphia, 1992, pp. 54-65. 
80. Gamby, D. and Chaoufi, J., "Asymptotic Analysis of 
Wave Propagation in a Finite Viscoplastic Bar," Acta 
Mechanica, 87 (19191), 163-178. 
81. Wang, L., Labibes, K., Azari, Z., and Pluvinage, G., 
"Generalization of Split Hopkinson Bar Technique to 
use Viscoelastic Bars," International Journal of Impact 
Engineering, Vol. 15, n 5, 1994, pp. 669-686. 
82. Bragov, A.M. and Lomunov, AK, "Methodological 
Aspects of Studying Dynamic Material Properties Using 
the Klosky Method," International Journal of Impact 
Engineering, Vol. 16, n 2, 1995, pp. 321-330. 
83.  Zhao, H., Gary G. and Klepaczko, JR, "On the Use 
of a Viscoelastic Split Hopkinson Pressure Bar, 
International Journal of Impact Engineering, Vol. 19, n 
4, 1997, pp. 319-330. 
84.  H. Zhao, "Testing of Polymeric Foams at High and 
Medium Strain Rates," Polymer Testing 16 (1997) 507-
516. 
85.  Chen, W., Zhang, B. and Forrestal, M.J., "A Split 
Hopkinson Bar Technique for Low-Impedance 
Materials," Experimental Mechanics, June 1999, Vol. 
39, n 2, pp. 81-85. 
86. Knauss, W.G., Boyce, M., McKenna, G., and 
Wineman, A., "Non-linear time-dependent Constitution 
of Engineering Polymers," Report No. 95-10, Institute 
for Mechanics and Materials, University of California, 
San Diego, 1995, 1-16.  


	*Hassan Mahfuz, Wahid Mamun and #Shaik Jeelani
	Abstract  It is well known that during dynamic deformation or in the event when the deformation is imparted from outside at a very high rate, the stress experienced by the entire structure is not equal at any instance of time.  In other words, stress has
	
	INTRODUCTION


	Fig 1. Modified Hopkinson Bar Set Up
	MATHEMATICAL MODIFICATIONS
	
	
	
	
	SEPARATION OF ELASTIC WAVES IN THE SHPB




	INCIDENCE BAR
	
	
	SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES





